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SYMBOLS
local skin-friction coefficient
turbulent mixing erergy (two-equation model)
ratio of rates of strain in distorted homogeneous flows (eq. (53))
mass-averaged static enthalpy
mass-averaged fluctuating static enthalpy
distortion parameter (eq. (63))
surface roughness parameter, E%l
length scale (eq. (15))
mean pressure
fluctuating pressure
production term in turbulence kinetic energy equation (eq. (1))

mass-averaged turbulent heat-flux vector (eqs. 9))

mass-averaged total heat flux vector, molecuiar plus turbulent
mechanisms (eq. (7))

scaling Reynolds number for Ax (eqs. (16) or (39))
scaling Reynolds number for 7y (eqs. (16) or (39))

turbulence Reynolds number (eq. (17})

mean rate of strain tensor (eq. (8))

absolute magnitude of mean rate of strain, J§;;§;;
time

mass-averaged velocity vector

mass—-averaged fluctuating velocity vector

. ‘W
friction velocity,|/ -
NI

space coordinate vector, i =1, 2, or 3

surface blowing rate
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normalized surface blowing rate, —
closure coefficient in Saffman's turbulence kinetic energy equation

closure coefficient in dissipation terms of pseudovorticity or specific
dissipation rate equation (eq. (14) or (37))

closure coefficient in turbulent mixing-energy equation (eq. (13))
closure coefficient in decay term of heat-flux equaticn (eq. (36))

closure coefficient in production term of specific dissipation rate
equation (eq. (1l4) or (37))

closure coefficient in eddy diffusivity expression (eq. (12))
Kronecker delta
eddy diffusivity

axial rate of strain in homogeneous flow
e

turbulence kinetic energy ratio factor at boundary-layer edge,

Karman constant
rate of shearing strain in homogeneous flow

low turbulent Reynolds number factor for closure coefficient in Reynolds
stress redistribution term (eqs. (16) or (39))

closure coefficient in redistribution term of Revnolds-stress equation
(eq. (35))

molecular viscosity
kinematic viscosity
mean density

ins. antanenus density

inverse of the effective Prandtl number for the turbulent diffusion of
specific dissipation rate

Inverse of the effective Prandt) number for the turbulent diffusion of
Reynolds stress or kinetic energy
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inverse of the effective Prandtl number for the turbulen: diffusion of
heat flux

mass averaged specific Reynolds stress tensor (eqs. (9))

ij

r}j mass averaged specific total stress tensor, molecular plus turbulent
transport (eq. (6))

bij correlation of pressure and fate of strain fluctuations

X damping coefficient for \E

Jij mean vorticity tensor

W pseudovorticity or specific dissipation rate

Subscripts

w surface value

o initial value

e boundary-layer edge value

Superscripts

+

"law of the wall" coordinate

u
+ u +

T
U= TT s, Y =Y
w




PROGRESS IN TURBULENCE MODELING FOR COMPLEX FLOW FIELDS

INCLUDING EFFECTS OF COMPRESSIBILITY

David C. Wilcox* and Morris W. Rubesint

SUMMARY

Two second-order-closure turbulence models have been devised that are
suitable for predicting properties of complex turbulent flow fields in both
incompressible and compressible fluids. One model is of the '"two-equation'
variety in which closure is accomplished by introducing an eddy viscosity which
depends on both a turbulent mixing energy and a dissipation rate per unit
energy, that is, a specific dissipation rate. The other model is a "Reynolds
stress equation'" (RSE) formulation in which all components of the Reynolds
stress tensor and turbulent heat-flux vector are computed directly and are
scaled by the specific dissipation rate. Computations based on these models
are compared with measurements for the following flow fields: (a) Jow speed,
high Reynolds number channel flows with plane strain or uniform shear;

(b) equilibrium turbulent boundary layers with and without pressure gradients
or effects of compressibility; and (c) flow over a convex surface with and
without a pressure gradient. The RSE model-computed flow properties generally
differ by less than 10% from the measurements for all of the applicationms.
Discrepancies betwcen two-equation model predictions and the measured flow
properties are much larger only for homogeneous flows with suddenly applied
strain, lending further credence to the notion that a Reynolds stress model
offers little advantage over a two-equation model for two-dimensional boundary
layers that are close tc equilibrium.

INTRODUCTION

For the past several years, Wilcox and nis colleagues have made signifi-
cant progress in developing second-order closure models suitable for computing
complex turbulent flows, including the effects of compressibility (refs. 1
and 2). While early emphzsis was focused on two-dimensional attached flows
with curved streamlines, care was taken to ensure that. at least in principle,
the models could be applied in a straightforward way to both separated and
three-dimensional flows. Although most of the modeling effort was devoted to
the development of a "two-equation' eddy viscosity model of turbulence, this
work was guided to some extent by the parallel development of a model for the
Reynolds stress tensor equation. These models were significant improvements
of the two-equation model originally devised by Saffman (ref. 3) and Wilcox
(refs. 4 to 6). Most importantly, the model presented by Wilcox and Traci
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(ref. 6) is as accurate as mixing length theory for equilibrium boundary
layers! and has a much wider range of applicability, for example, reference 7.

Throughout the development of these models, the production terms for the
turbulence kinetic energy were maintained as in Saffman's original work
(ref. 3) where the production of turbulence kinetic energy was set proportional
to the kinetic energy times the absolute value of the rate of strain. Although
this approach led to a mathematically elegant homogeneous equation for the tur-
bulence kinetic energy, it introduced modeling for terms that can be derived
directly. For attached boundary layers, Saffman's additional modeling intro-
duced no significant differences. When more general flow fields were consid-
ered, the Saffman-type production terms were demonstrated to contain the poten-
tial for introducing errors. For example, if the homogeneous turbulence field
along the centerline of an expanding supersonic nozzie is considered, the
actual production of kinetic energy is given by

—_— Jus
P, = -(Fuju}) 5 1)
]
For this flow field, only normal stresses exist, and thus the stresses that
appear in equation (1) are positive. As the corresponding rates of strain are
also positive, equation (1) then indicates a decrease in the kinetic energy
along the centerline of the nozzle. For this same flow field, the Saffmau pro-
duction term

P, = a*pSe (2)

indicates an increase in kinetic energy since the kinetic energy e and thc
absolute magnitude of the rate of strain tensor S are both positive. The
rather gross discrepancy for this example (and for others as well) suggested
revision of the production terms in the Wilcox-Traci model. Thus, one objec-
tive of the current work was to reintroduce the unmodeled production terms
into the model equation for the kinetic energy.

During the development of the Wilcox-Traci model, several advances in tur-
bulence modeling were introduced that are not common, as a group, to most of
the models fcund in the literature. First, the effects of compressibility
have been accounted for through tine use of mass-weighted averaged dependent
variables and some hypotheses regarding terms in which the compressibility
effects are isolated. Second, several modeling coefficients have been made to
depend on th2 turbulence Reynolds number and this, together with the introduc-
tion of molecular diffusivity as a parallel transport mechanism to the turbu-
lence, has permitted integration of the transport and modeling equations
directly to surfaces bordering the flow fields. Thus, the relatively common
use of a '"law of the wall" to define the boundary conditions near surfaces was
avoided. Finally, a Reynolds stress tensor model for compressible and low

LA boundary layer is defined as being in equilibrium if its local skin
friction, momentum and displacement thicknesses are consistent with the
Ludweig -Tillman formula (ref. 8).




Reynolds number flows was developed in parallel with the two-equation model to
guide the development and assess the limitations of the latter. A second
objective of this paper, then, is to modify the production terms in the Reyn-
olds stress tensor model and to compare the results of compu.ations based on
this model with computations from the two-equation model for a series of homo-
geneous and boundary-layer flows that are well documented with measurements of
the turbulence quantities.

FORMULATION OF MODEL EQUATIONS

Mean Flow Equations and Boundary Conditions

For a compressible fluid in turbulent flow, the conservation equations for
mass, momentum, and energy are writien in terms of the mass-weighted average
quantities as follows:

p .3 =
ot + X, (pui) 0 <)
i

BN a8 - _9P 4 9 (yT

ot (puy) + e (pujuy) %, + ax, (ptiy) (4)

Jdu
3 P) - J9p op T __1 - 9 T
¢ (Ph) + ~5;§ (pujh) = = * Uy 2 + ety T o (pay ) (5)

Here, the symbols Tij and q-T denote the specific mass-weighted average total
shear stress and heat™ flux tgat include the contributions cf both the molecular
and turbulent transport. These quantities are defined as

Ju
T - IR s 3 )
Tij 2v (SlJ 3 oy 61] + Tij (6)
and
T__v_ 3h
4 Pry 3x; + 9 o))

These ''specific'" quantities are the actual total shear stress and heat flux
divided by the local mean density. The mean rate of strain tensor appearing
in equation (6) is given by

Jdu Ju s
PN (it St |
5137 2 (axj ' axi) ®)

Finally, t4j and q:; are the mass-weighted averaged Reynolds stress tensor and
heat flux vector defined by
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where p 1is the instantaneous density, ¢ ) denotes the time average of the
enclosed quantity and the superscript " represents the fluctuating part in a
mass-weighted average formulation. The boundary conditions for equations (3)
to (5) at surfaces (x, = 0) are

u1=0

up = 0 or v,(x;)

oh _ ( dh
h hw(xl) or g;; = (5;;)
w

J

All flow variables anproach free-stream flow conditions in general flow field
computations. For the special case of two-dimensional boundary layers, the
boundary conditions at the boundary-layer edge are at Xx; = 8(xy)

u; = Ue(xl)
11)
h = hg (%)

In this section, two models are developed for evaluating the 135 and
q; defined by equations (9). The first is of the "two-equation' type employ-
ing an eddy diffusivity that depends algebraically on the dependent variables
of the two modeling equations. This model is a direct extension of the model
of reference 6 through the use of unmodeled production terms and a constitu-
tive relationship that permits nonaligned stress and strain. As with all eddy
diffusivity models, sudden changes in the rates of strain result in immediate
changes in the Reynolds stresses and heat fluxes, although the eddy diffusiv-
ity itself has not had time to respond. To remedy this situation, Saffman
(ref. 9) developed a method for a two-equation model that permits stress and
strain to develop at different rates. Although this method showed promise, it
complicated the modeling process by introducing an additional lag equation.
The authors felt that the use of Reynolds stress modeling equations could
achieve these same objectives regarding the relaxation of equilibrium between
stress and strain in a more direct fashion. The Reynolds stress approach
eliminated the need for an assumed form of constitutive relationship between
stress and strain. Further it was felt that an understanding of the rates of
interaction between the individual Reynolds stresses, not forced by a consti-
tutive relationship, would lead tc a more general model for three-dimensional
flows and, perhaps, »uld provide guidance for improving the form of the sim-
pler model and defin the flow conditions for its validity.




Two-Equation Model

The two-equation eddy diffusivity model proposed herein is a direct
extension of the Wilcox-Traci model of reference 6. The differences occur
within the production terms of the kinetic energy and specific dissipation
rate equations2 and in the constitutive relationship between the Reynolds
stresses and the mean rates of strain and vorticity. For the reasons cited in
the Introduction, the production term in the kinetic energy equation is
retained as the sum of the products of the local Reynolds stress times the
appropriate mean velocity gradient, equation (1). The analogous term of the
specific dissipation rate equation expressed in w2 is modeled as the product
of the production term of the kinetic energy equation, the ratio w?/e and a
new modeling coefficient. This approach is in heeping with the customary way
of arriving at the individual terms for the second equation in two-equation
models. Other than the production terms and the choice of density scaling for
w, the model equations are virtually identical to those of Wilcox-Traci
(ref. 6). The definition of the eddy diffusivity is

(12)

where the turbulence kinetic energy and specific energy dissipation rate are
given by the turbulence modeling equations:

3 3 duy 3 se
= - . = . —= - g% < * <=
5p (Pe) + 5 (puje) = o745 3%, B*oue + —— [(u + o*pe) ax.] (13)
J ] J J
and
du
D oud) + = 2y = 4 & i (.?L 2] o2
s P 5 (puju®) =¥ g PTij ox [B * 20 \axy) )P
3 du?
+ X, (u + gpe) 0X s (1)
J ]
where the length scale is represented by
1/2
g = ew (15)

The modeling closure coefficients employed are as follows:

?These equations differ from what has become the classical two-equation
model of turbulence (ref. 10) in that the authors interpret e as a '"mixing"
energy more akin to 9/4 ¥'2 than to the total turbulence kinetic energy in a
boundary layer, and further, feel that w, the rate of dissipation of kinetic
energy per unit of kinetic energy, may be a more significant quantity than the
rate of turbulence dissipation itself.




3 9 1
B:—ﬁ-)-’ B*..—.-lo_o, o’=0*=7
y* = [1 -~ (1 - A?)exp(-Rep/R,)]
(16)
YY* = v [1 - (1 - A%)exp(-Rep/R )]
10 1
Yo =-ir s A = II . Re =1, Rw =2
The Reynolds number of turbulence is given by
1/2y
ReT=-e—\)'— 17)

The boundary conditions appropriate to these modeling equations when applied
to boundary layers have been guided by asymptotic analysis and reference to
other models. The surface boundary conditions for equations (13) and (14) are
as fellows:

At X2=0
3\
e =20
20vw
w > for smooth impervious wall
szz
or
S Urz
w > 7§§-<;7 for a rough and/or porous wall § (18)
where
2 1/2
-1 = g-1 -1 . (3¢ 8
S SR + SB 5 and SR = k+) -+(k+)
6
SB =

via +vh 1
\ w
(See ref. 6 for details of the porous or rough wall formulation.)

At Xp = §

e 1Uez(x1)

(19)

= 0.09 8% /45 (x))
As discussed in reference 6, the quantity 2/8*1/“ behaves much like the clas-
sical mixing length. With this understanding, the proportionality coefficient
of 0.09 in equations (19) is readily seen to be consistent with the Escudier
(ref. 11) eddy-viscosity model for boundary layers.




To model Reynolds stresses that do not necessarily align with the mean
rates cof strain, the constitutive relationship relating these quantities was
expanded to

2 1 2% 8 e
Tig = T3 e85t 2€<?ij - §-axk Gij)‘+.§ (B*w2 + 25__S_ ) (SiQOj + Sijmi)
mn~nm
(20)

where the third term on the right was absent in the Wilcox-Traci model. The
vorticity tensor used here is defined as

Ju du s

1 ( i J)

Q.. =5 \7—/— - (21)
ij 2 8xj axi

The form of equation (20) was guided to some extent by Saffman's constitu-
tive relationship, derived in reference 9, wvhere the Reynolds stress is
expressed in a tensor series to quadratic terms in the mean rates of strain
and the vorticity

= -2 24e _Be o Ce
T3 T 73 %%y YT a5 Ty Skebig T 7 Sudik
De . Fe _o» Ge
-2 +5,.0 ) -— L
e (bijik Sik jk) — leélj 2 plkpjk (22)

where A, B, C, D, F, and G are modeling coefficients. Note that equa-
tion (22) applies to inccmpressible flows. In the current work, Saffman's
distinction between equilibrium and nonequilibrium kinetic energy is dropped,
aind this has consequences in the evaluation of the modeling coefficients A
through G. The quantity e« in equation (22) is identified here with tne
kinetic energy of the modeling equation (eq. (13)).

Equation (22) can be sinplified by requiring it to conform with certain
fundamental experimental observations. The experiment of Tucker and Reynolds
(ref. 12) where a homogeneous, nearly isotropic turbulence field is distorted
by mean normal strains, indicates that under the normal straining

u; = EX) , u, = -€x, , and uz = 0 (23)

the normal Reynolds stresses are related approximately as

1
T33 =5 (111 + 152) (24)

If the conditions represented by equations (23) and (24) are introduced into
equation (22), it is found that C = 0 is necessary. In addition, in refer-
ence 13, it was found that a field of homogeneous turbulence in rigid body
rotation decays without developing an isotropy. This observation requires

G = 0.




If equation (22), with C = 0 and G = 0, is applied to a shear layer
where the only velocity gradient that exists is duy/dx,, it is found that
equation (24) again applies and that B+ F = 0 1is required to assure that
the magnitude of the trace of the normal Reynolds stresses is equal to twice
the kiretic eneryy. With these values for the coefficients, the Saffman for-
mulation equation (22) reduces to

2 2Ae De

= £ Zfhe _Be 2 _ 2
55 3 edij + " Sij + > (Sijki + Sikaj) > (Skl ka)éij (25)

It should be noted that in a shear layer or in a boundary layer, the last termn
of equation (25), containing the factor B, is negligibly small. As the
authors' interest is primarily in such shear flows, the term containing B
was dropped in the development of equation (20). Equations (25) and (20)
differ in other respedlts. The term S__S that appears in equation (20) was
necessary in the computations to avoid sign difficulties at the outer edge of
the boundary layers where the values of the normal Reynolds stresses are rela-
tively small. The term duy/dxy was introduced to account for compressibil-
ity and to force the trace of the second term on the right in equation (20) to
vanish. The coefficient A was identified with the y* in equation (12).
Finally, the quantities g* and 8/9 were introduced in the last term to
satisfy some boundary-layer needs. These can be seen by writing equation (20)
for the logarithmic region of a flat plate boundary layer in incompressible
flow. There the only mean velocity gradient of consequence is du;/3x, so
that

ou du) )
1 Sy, = %B_XZ— (29)

1
S12 = 2 90X,
with the rest of the components of the rate of strain tensor being orders of
magnitude smaller. Similarly, the only components nf vorticity of importance
are

U= g5y, 0 21 T T a (27)

With equations (26) and (2/), 112 from equation (20) can be written as

T2 = € = gk — (28)

In this region of the boundary layer, a balance exists between the production
and dissipation of turbulence kinetic energy in equation (13), thus

Jdu ) pan

P2 %, B*puwe (29)
which leads directly tc ,
5 (301)‘_

Bru< = T (30)




vhen y* is set equal to unity because of the high turbulence Reynolds number
in the logarithmic region of the boundary layer (refer to eqs. (16)). The
normal components of the Reynolds stress tensor in the logarithmic region

become
2 8 (1 8\ )
Tl = —e[§ + 9 (Z)] = -e(g)

2 8 (1 4
T22 = 'e[':; ) (z)] - (3) ¢ (1)
753 = ~(3) - -<(5)
33 3 9/ |
and are in the ratio
T11:Tp2:T33 & 4:2:3
Alsc, in this region of a flat plate boundary layer
Ty = Tw (32)
so that equations (29) and (30) combine to indicate
Tw/D
e = (33)
8*1/2

In parallel to these equations, the Reynolds heat flux vectors are repre-
sented as

*
Pr

% |5

ah
- (34)
T 3xj

wla

q, = —
j PrT

ol

where PrT, the turbulent Prandtl number, is usually assigned a value of about

0.9. Comparisons of these modeling conditions with several sets of boundary-
layer data are given in later sections of this report.

Reynolds-Stress Model

The Reynolds stress formulation presented herein is a straightforward
extension of the model developed in reference 2. For - .mpleteness, discussion
in this section reviews some of the material presented in reference 2, partic-
ularly that pertaining to closure approximations. The key theoretical advan-
tages for using the Reynolds stress model over the usual eddy viscosity model
lie in removing the postulates that the principal axis of the Reynolds stress
tensor align with that of the mean strain-rate tensor and that sudden changes
in the mean strain tensor are reflected immediately in the Reynolds stress.

In terms of mass-averaged dependent variables, the Reynolds stress ecuation or
RSE model is expressed in terms of components of Reynolds stress as

— e A o A A o e e e ol S o e
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im axm ijm axm + 3 8 o“’eGiJ’ Atpw

3 )
e (prij) + e (p“kTij) = -p1
2 \ 2
< \ g - £
x (“[ij + 3 eGij} + p(ijbmi + Timsmj 3 Tn Snméij)

Ju 9T 2

4 1 k ) i
I L e = — 8, A * 1]
+ 3 oe<le 3 axk 61J) + 9K [(u + o%pe) axk]

(35)
The components of the Reynolds heat flux are modeled with
. Ju:
3 3 oh i
Ve ; — = PT,: "~ s T = BR* :
5t (Pag) + 5 (oujqi) P15 3, T P93 ox, T BFrewdy
J ] J
3 ( b 994
+ — — + oX¥pe ) —— (36)
dxj [PLL aij
The specific dissipation rate is given, again, by
2 2 5 5 w? duy TR
— < + — AT = = R R . 3
gr (Pw) + g (ugnt) =y T ety 5 TR Y 2’(3xk> o
J i L
J dw
+ o— | + ooe) (37)
7 [ 3"5]
where
e
£ = —
8]
1
e -2y (38)
v E v 2StnSom
8*\0‘1
The modeling coefficients are:
\
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Again, the Reynolds number of turbulence, Ret, is given by equations (15)
and (i7). At a solid surface, equations (18) again apply and, in addition,
at X2 =0

q. =0
J (40)

At a boundary-layer edge, in addition to equations (19), it is required that
at x5 = §

qj=

0
2 2
Tij 3 tUg (Xl)(sij (41)

where the latter assumes isotropic free-stream tur ilence.

To explain the closure approximations employed, attention is first focused
on the heat flux equation (eq. (36)), and the specific dissipation-rate equa-
tion (eq. (37)). The first two terms on the right side of equation (36) are
the exact heat flux production terms. The next term is the modeled dissipa-
tion, while the last term is the modeleé turbulent diffusion. It is assumed
that. the dissipa:ion of the heat flux is proportional to the heat flux vector
and that the tursulent diffusion of the heat flux is a simple gradient diffu-
sion process. For the specific dissipation rate equation, the only difference
between equation (37) and that used for the two-equation model (eq. (14)), is
in the form of the coefficient y. An explanation of these differences is
given ip the section entitled '"Near Wall Viscous Modifications."

In the Reynolds stress equations, the first two terms on the right-hand
side are the exact, unmodeled production terms. The third term is the modeled
dissipation. The next three terms model the correlation of the pressure and
rate of strain fluctuations. The finul term is the sum of the exact molecular
diffusion and modeled turbulent diffusion of the Reynolds stress.

It is illuminating to compare those modeled terms with other models. For
incompressible flow, the correlation of fluctuations in the pressure and rate

strain, ¢4, namely,
aui du}
= 'T— =
Py TP ax, *axg e

has been modeled by Launder, Reese, and Rcdi (ref. 14) with the rather complete
form

°1j = Cls*w(rij + % 6ije) - a(pij - % Pdij) - é(Dij - % Pdij) - w}esij (43)

where C;, &, é, and # are the Launder et al). clcsure coefficients, and




Jus duj

Pij T ik 3, ik
auk 3Uk
Dij = Ty v + Tjk Ix. \ 44)
J 1
-1 -1 -
P =3P =304 ° "unSn

/
The first of the terms on the right of equation (43) is the Rotta '"ten-

dency toward isotropy" term (ref. 15), involving the departure from isotropy of

the normal Reynolds stresses. The remaining terms represent the interaction

between the Reynolds stresses and the mean flow. While some of the elements

in these terms (refer to equations (44)), are similar to the unmodeled produc-

tion terms, the terms are structured to vanish when the trace of ®ij is

taken, as would be required by continuity for an incompressible fluid within
equation (42). The relationship of these terms to production and dissipation
of the Reynclds stresses can be demonstrated most directly by introducing the
mean rate of strain and vorticity tensors (eqs. (8) and (21)), respectively.
For example, the exact production terms in equation (35) can then be rewritten
as

BUJ' Bui
Tim me + ij 3;; - (ijsmi + Timsmj) + (ijQmi + Timpmj) (45)
. (production due (production due
(total production) to straining) to rotation)

If the strain and vorticity tensors are introduced into equation (43), and
this general pressure strain correlation is introduced into equation (35),
there results for incompressible flow

Dt..
1] - A - ~
e - Timsmj + ijSmi)(-l +a + B) - (TiQOj + ijﬁmi)(-l + a - B)

a2 cz_(’-_u.z_)]
(G + 8) 3 Sijp + Bfwe[3 sij C1 e + 3 6ij

\\;I
+ is o )+ g%, ~1]
yeS] ] (\ J ) p ([‘6)

[his form of the Reynolds stress equations is equivalent to that given in
reference 16, but the coefficients used in each case have slightly different
definitions which causes some apparent sign differences.

From equation (46) it is seen that the pressure rate of strain correlation
terms, identiiied by the modeling constants C;, u, and 4, behave in parallel
with the production and dissipation terms; the & and B complement the factor
-1 in the first two production terms resulting from strain and rotation, and
part of C; can be considered to account for some anisotropic dissipation.
When equation (46) is applied to a flow with uniform shearing strain, where

12



1 3y
$12 = 5 3%, = a1

1 3U1 (47)
Q12 = 2%, =021

are the only nonzero elements of the strain and vorticity tensors and when
convection and diffusion are neglected, there results

Tl 2 -4 4 4a - 2B
< *t3° 3c, (48)
T22 2 2 - 24 + 4B
< Y37 T3 (49)
and
33 2 2 -23-28
e 3T T (50)
The corresponding shearing stress is
2 (G- D(x,,/e) + B(x /o) + (7/2)
e C) L

Because equations (48) through (50) are not independent, these equations,
together with equation (51), cannot in themselves be used with specified
values of the normal and shear Reynolds stresses to define the four constants
@, B, Y, and C;. Launder et al. (ref. 14) avoided this difficulty by follow-
ing Rotta's (ref. 15) suggestion regarding tensor symmetries of the pressure
strain terms and found that &, B8, Y could each be expressed in terms of a
palr of constants, C; and C,. They then employed experimental data of the
normal Reynolds stresses in nearly homogeneous shear flows to define Cy and
L, through equations equivalent to equations (48) through (50). The approach
in the present analysis is to require consistency between equations (48)
through (51) with equations (31), (32), and (33). 1In ».dition, it is necessary
to introduce the assumption that rotation alone does not cause a redistribution
of the Reynolds stress. This assumption is consistent with the argument that
eliminated the last term of equation (22). The Reynolds stress model of the
present analysis, therefore, has been forced to be consistent with the previ-
ously developed two-equation model, where the normal stresses in the logarith-
mic region of the boundary layer were set in the ratio T :1,,:t153 = 4:2:3,
The values of a, R, Yy, and Cy resulting from this model are given in table 1
along with the values used by Liaunder et al. (not including special near-wall
effects).
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TABLE 1.- COMPARISON OF CLOSURE COEFFICIENTS IN REYNOLDS STRESS MODELS

Coefficient
Model Cl & é ?

Present study

.5 0.5 0.5 1.33
Launder, Reese, and Rodi 5

.76 .11 .36

-

The values of the Reynolds stress components in the logarithmic region of
a flat plate boundary layer utilized in the present model are compared to the
corresponding values of the model of reference 14 in table 2.

TABLE 2.- REYNOLDS STRESS COMPONENTS IN THE LOGARITHMIC REGION
OF A FLAT PLATE BOUNDARY LAYER

Reynolds stress component
Model
T11/e T22/e 133/e T12/e
Present study -0.89 -0.44 -0.66 0.31
Launder, Reese, and Rodi - .93 - .46 - .61 .35

A comparison of these tables reveals that similar values of Reynolds
stress components can be achieved in a nearly homogeneous shear layer or in the
logarithmic region of a boundary layer with rather disparate sets of modeling
coefficients based on different physical arguments. For example, the physical
assumption that mean flow rotation has no effect on the redistribution of the
Reynolds stresses force & = B, and the consequence of this is felt in all the
other coefficients. One result is that the present model places greater empha-
sis on the Rotta term, through the larger C,, than does tne Launder model.
Obviously, these models must be tested against data in flows that are differ-
ent from a nearly homogeneous shear layer to determine which model has the
better universal character. It is interesting to note that, in terms of the
symbols used in the present model, C, = A*/g*, With these modeling constants
it can be shown that in a uniform shear flow

L2 Tk
T12 = 7 9g*x Ty ox (52)

Equation (52) is equivalent to an eddy diffusivity formulation and prcvides a
justification for the use of such a concept in nearly uniform shear layers.
It is interesting, however, tha: the "eddy dif fusivity" is proportional to
1,, rather than to e as in the two-equation model. This difference proves
extremely important for flows over curved surfaces (ref. 17) and is exploited
in a later section of this report.
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APPLICATION TO TURBULENT FLOWS WITH PLANE STRAIN AND UNIFORM SHEAR

In the first series of tests of the two revised models, consideration is
given to the distortion of high Reynolds number (Rep >> 1) grid turbulence
caused by an application of plane strain and uniform shear. These cases act
as tests of the models where near-wall viscous effects are unimportant. For
these flows the velocity gradient tensor simplifies to

€ K 0
0 ef 0 (53)
0 0 -1+ f)e

where € and Kk are the axial strain rate and shearing rate, respectively.
The 11 cases considered are indicated in table 3.

TABLE 3.- PLANE STRAIN AND UNIFORM SHEAR TEST CASES

Reference E(sec™!) <(sec™1)

Tucker-Reynolds (ref. 12) 4.45 0.0

Reynolds-Tucker (ref. 18) 4.80
14.00
12.00
3.25

Townsend (ref. 19) 9.41
Marechal (ref. 20) 19.00

Uberoi (ref. 21) 7.62
18.
32,

Champagne-Harris-Corrsin 0.
(ref. 22)

The assumption that the turbulence is homogeneous in a coordinate system
that moves with the fluid volume, leads to the expression of the two-equation
model in the following simple form:

g{’- = {u'vD R+ (W'D (L4 ) - w'D - D]E} - Hue (54)

2
- -“i— (=u'v) &+ [W'2) (1 4+ £) = ') £ - W2DE} - B3 (55)




g i e e AR AR Ol tian bt dmane ol e

where
(-u'v") R
e B W (56)
w'2) _ 2 €, 4 (Rlw)?
e 3_200 98*1+x2 (57)
w'2) 2 £ 4 (R/w)?
e -3_2;4»f—98*1+)(2 (58)
WD 2,58 04 (59)
e 3 R
and C WG D (L) + (Rw)?
ol = (50)

Note that in writing equations (54) to {(60) the turbulent Reynolds number is
assumed very large so that viscous effects are ignored. The RSE model simpli-
fies in a similar manner, although the equations are more lengthy; for brevity
the simplified RSE model equations are not presented.

The computations of the ordinary differential equations have been per-
formed with a fourth-order Runge-Kutta integration schemc. To initiate the
computations, a valus for the dissipation rate, w, is needed at t = 0. For
the Tucker-Reynolds experiment, the initial value of « has been determined
from the measured variation of e wupstream of the straining region. That is,
in the absence of strain, e 1is given by

e

€ref

1 -6/5 .

where subscript ref denotes reference conditions. From the known variation

of e with t = x/U, the value of wrofg and hence w at the initial station
has been determined to be

Buw, = 21.5 sec”! (62)

To set Buw, for the other flows, we have used values similar to those used by
Saffman (ref. 9) but with slight differences,

Of the eleven cases considered, the Tucker-Reynolds (ref. 12), Champagne-
Harris-Corrsin (ref. 22), and Townsend (ref. 19) experiments are the most com-
pletely documented. Hence, we first focus on these three cases.

Tucker-Reynolds Plane Strain Flow
Figure 1 compares the computed and measured distortion parameter, K, for

the Tucker-Reynolds plane strain flow; by definition
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W' - w'?
= w'2 u'z (63)
(w's) + ')
As shown, good agreement has been obtained between computed and measured values
of K when the RSE model is used. Note that the postulated variation of Ax
with the strain parameter X (see egs. (39)), viz,

A = [% - —Z— exP(-SX)] B (64)

is needed to insure the proper relaxation of the anisotropy after the strain

is removed. Although a less rapid variation of A*¥ with x is acceptable

for this flow, equation (64) has been found most suitable overall for all the
flows considered. Figure 2 shows how close the RSE model predicted normal
Reynolds stresses are to the corresponding measured stresses when the initially
anisotropic character of the flow is accounted for.

Results obtained using the two-equation model are not in as close agree-
ment with the data. At the onset and termination of strain, discontinuous
jumps in the stresses occur. For example, when the strain is removed, the two-
equation model unrealistically predicts an instantaneous return to isotropy.
Also, the predicted value of K at the end of the straining region is only
0.39 compared to the corresponding measured value of between 0.55 and 0.65.

As a numerical experiment, the two-equation model computation was contin-
ued much farther downstream without removing the strain. The asymptotic value
of the distortion parameter is 0.55, a value nearly identical to that predicted
by the RSE model. Additionally, it was found that when the Saffman production
terms are used the asymptotic value is 0.675. With either type of production
term, the asymptotic value is not achieved until about x = 7.6 m. The
results of this numerical experiment and the fact that the two-equation model
predicts an abrupt return to isotropy when the strain is removed illustrate
the fact that even with the new constitutive relation (eq. (20)), the two-
equation eddy viscosi’y model ie limited to near-equilibrium flow conditions.

Champagne-Harris-Corrsin Uniform Shear Flow

Figure 3 compares computed and measured Reynolds stresses for the Cham-
pagne, Harris, and Corrsin uniform shear flow. The entire region of develop-
ing flow is ccnsidered, not merely the asymptotic values. As shown, the RSE
model predicted stresses that are in relatively close agreement with the data.
At x = 3.2 m the computed shape parameter, (-u'v")//'2)(v'?), of 0.47 is
2% lower than the measured value. The only noticeable disagreement occurs
between computed and measured values for (w'-); the model predicts that as the
flow approaches equilibrium,

(W' .
——

ofro

(65)

while the data indicate a ratio of 0.574, somewhat closer to values used by
Launder, Reese, and Rodi (see table 2). This is a consequence of the fact
that the model predicts that in equilibrium the normal stresses lie in the
ratlo
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W'2D:iv'D ' = 4:2:5 (66)
while the data indicate
W'D :v'Ddw' = 4:2:2.4 (67)

As with the Tucker-Reynolds computation, the two-equation model predicts a
slower approach to equilibrium than does the RSE model and the data. Again, it
is instructive to examine the asymptotic solution for the two-equation model
with the conventional and with the Saffman production terms. We find the
following:

(ca'v") 0.48, conventional production

e ———— (68)
fu'2)(v'?) 0.76, Saf fman production

and

) 4:2:3, conventional production
W'D - (69)
4:1.5:3, Saffman production

Compared with equation (67), equation (69) provides another argument against
using the Saffman production terms. Oon the one hand, using tihe Saffman pro-
duction terms yields a normal stress ratio of 4:2:3 for a flat plate boundary
layer (FPBL). This ratio occurs because the turbulent mixing energy produc-
tion and dissipation terms balance. However, for the Champagne, Harris, and
Corrsin flow the balance occurs in the « equation rather than the e equa-
tion when the Saffman terms are used; consequently the normal stress ratio is
distorted. On the other hand, using the conventional production terms leads
to a procduction-dissipation balance in the e equation both for the Champagne,
Harris, and Corrsin flow and for flat plate boundary-layer flow. Since the
RSE model and the Champagne et al. data also indicate that turbulent energy
production and dissipation balance, using conventional production terms
appears to yield a more suitable physical representation for uniform shear
flow. '

Townsend Plane Strain Flow

Figure 4 compares the computed and measured distortion parameters for
Townsend's (ref. 19) plane strain flow. Again, reasonably close agreement
between RSE computed and measured values of K have been obtained. With the
two-equation model, predicted values of K are about 25% lower than measured.

Other Plane Strain Flows

Figure 5 presents a summary of computed and measured distortion parameters
for the ten plane strain flows listed in table 3. Only RSE model predictions
are shown in the figure. As shown, the predicted values of K at t = tpay
(the time corresponding to the farthest downstream station) lie within 207 of
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corresponding measured values (see table 3). The twc-equation model generally
predicts values of K which are about 70% of measured. The agreement with
data of long-time asymptotic values is much better, further illustrating the
fact that the two-equation model fails to accurately describe the rate of
approach to equilibrium,

NEAR-WALL VISCOUS MODIFICATIONS

The conservation and turbulence model equations presented earlier con-
tained terms involving the molecular viscosity of the fluid in order to permit
boundary-layer computations with integration through the viscous sublayer and
no-slip boundary conditions. 1In this wayv, use of artificial boundary condi-
tions such as the "law of the wall'" can be avoided ard the uncertainties of
such boundary conditions far from flat plate boundary-layer conditions can be
eliminated. For the mean conservation equations it is sufficient to include
moiecular viscosity in the diffusion terms. Similarly, the use of molecular
diffusion in the various model equations permits imposition of the no-slip
condition on the Reynolds stress and turbulent heat flux as well as on the
mean velocity, that is,

uj =93 = T35 =0 y=0 (70)
However, without further modification it was found by using the sublayer pro-
gram developed by Wilcox and Traci (ref. 6) that the smooth~wall value of the
constant in the law of the wall, C, defined by
u.y
C= 1lim (lL —-% log —— (71)

is approximately 7.0 and 7.5 for the two-equation and RSE models, respectively.
As these values differ from the commonly accepted value of C between 5.0 and
5.5, further viscous modifications were indicated. Wilcox and Traci (ref. 6)
have shown that a proper level of C could be achieved by introducing viscous
damping of the production terms in the e and w equation. This result can be
accomplished in the present models by damping the Reynolds shear stress, which
is implemented in the revised two-equation model by writing

€ = Y*e (72)

W

where

y* =1 - (1 - A?)exp(-Rep/R,) (73)

To allow a different rate of damping of the w equation production term, we
also write

yy* = y [1 - (1 - Az)exp(-ReT/Rw)] (74)




where y_ = 10/9 1is the high Reynolds number value of vy. The closure coeffi-

cients A, Rg and R, are similar to those introduced by Wiicox and Traci
(ref. 6).

For the Reynolds stress model, the Reynolds stress itself is .Jamped by
increasing A* as follows:

A o= X - - A%)exp(-Rep/R )17 (75)

while <y is modified according to

T = 1F [1 - (L~ A?)exp(-Req/R)] (16)
where three closure coefficients A, Ry, and Rw again appear. To set the
value of A, we demand that in a Elasius boundary layer the models predict
that turbulent fluctuations are damped for Reynolds numbers below the linear-
stability theory, minimum-critical Reynolds number, Re. = 9x10“, Turbulent
fluctuations are damped provided turbulent energy production <t du/dy 1is less
than dissipation, B*we. This condition is satisfied throughout the boundary
layer up to a plate-length Reynolds number Reﬁ, given by

7%? s two-equation model
Rey =4 A (77)

456
. RSE model
N2 (1 - 22/3) mode

Requiring Reg = Re, yields the following values fer \:

1
T3 two-equation model
11
X = 1 (78)
1 RSE model

Following Wilcox and Traci, sublayer solutions have been obtained to determine
loci of values (Rg, Rw) which yield a smooth-wall value for C of 5.5. As
shown in figure 6, such a locus exists for each model. To select the optimum
(Re, Rw) pair, the turbulent energy balance between production and dissipation
has been compared with Laufer's (ref. 23) sublayer data (fig. 7). Closest
agreement with the data3 is obtained by using

Re = 1 both models (79)
and
2 two-equation model
R, = (80)
3 KRSE model

3To further validate the choices for Re and R , a few flat plate
boundary-layer transition predictions have been made. Transition location and
width are roughly the same as predicted with the Wilcox-Traci model. Although
further testing will be needed, it appears that the two revised models probably
predict transition as well as the Wilcox-Traci model and that transition modi-
fications devised by Wilcox (ref. 24) apply to both of these models.
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FQUILIBRIUM BOUNDARY-LAYER APPLICATIONS

In these applications, the turbulence models are used to comput: three
well documented near-equilibrium boundary layers under incompressible flow
conditions. The models are then applied to a compressible, flat plate boundary
layer. Then, ar example of a compressible boundary layer is computed to demon-
strate the effects of relatively strong adverse and favorable pressure gradi-
ents. These computatious are compared with both surface and profile data.

Incompressible Flows

To provide definitive tests of the revised models, flows were selected
(table 4) which include experimental data for all of the Reynolds stress com-—
ponents. Of the three cases, the low Reynolds number of the Andersen adverse-
pressure gradient case provides the most rigorous test of the models' ability
to simulate viscous effects.

TABLE 4.- BOUNDARY-LAYER EXPERIMENTS USED TO ASSESS THE TURBULENCE MCDELS

Flow Data sources

Flat plate boundary layer Karman-Schoenharr (ref. 25)
skin-friction correlation;
Klebanoff (ref. 26) data;
Wieghardt (rvef. 27) data.

Bradshaw adverse pressure gradient Bradshaw (ref. 28) data;
Coles (ref. 27) version of

Bradshaw data.

Andersen adverse pressure gradient Andersen (ref. 29) data.

Figures 8 to 10 compare computed and measured skin friction, cg, and shape
factor, H, along the three equilibrium boundary layers. Over these three
experiments, both models predict values of skin friction that are generally
within 5% of the data on both the flat plate and in adversz pressure gradients.
The predictions are lower than the data, with the RSE model yielding c<lightly
lower values than the two-equation model. The computed shape factors are
within 3% of the measured values for the two-equation model and within 5% when
the RSE model is used.

The predicted velocity profiles for both models are compared with the
data of the three experiments in figures 11 to 13. In figure 11 (the flat
plate boundary layer), the computations show a slightly thinner boundary layer
than given by the data, with the larger differences occurring at the low Reyn-
olds nunber. Geierally, the values of ut are within 5% of the measured
values For the test cases with adverse pressure gradients, the computations
yield velocity profiles that are generally less full than the data, but within

20% of the (.perimental values of ut even for the poorest comparisons (with
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the original Bradshaw data or Anderson's 1.8 m station). in these figures,
there is little choice between the two-equation and Reynolds stress models.

The computed and measured Reynolds stresses are compared in figures 14
to 16, where the mean velocity profiles are also displayed as u/U, versus
y/8. For all three flows, both models predict all four Reynolds stresses to
within 10% of the measured valves, except in the regions closest to the sur-
face. This is not surprising wien it is recalled that the modeling coeffi~
cients were based on arguments that in the law of the wall region both the
turbulent shear and kinetic €nergy are constant with y (refer to eq. (32)
and (33) or eq. (51)), whereas the data actually show variations of about 30%
in e. Changes very close to the surface in the current model, along the lines
taken by Launder et al. (ref. 14), possibly would imrrove this situation. It
is reassuring, however, chat the normal stress compoaent most accurately pre-
dicted is (v'2?) or 1,5, and in view of equation (52) explains why the shear
stress in the present model is predicted rather accurately even though e is
not. In the normalized mean velocity profiles, the RSE model velocity profiles
appear to have suffered more deceleration than those of the two-equation model.
On balance, the two-equation model shows slightly closer agreement with the
boundary-layer data than does the RSE model.

Compressible Flow

The turbulence models presented here were extended to compressible flow
through the assumption that the effects of compressibility can be introduced
primarily by use of the Favre mass-weighted dependent variables (ref. 30) in
both the conservaticn and modeling equations. Vhe: Wilcox and Alber (ref. 4)
first utilized the Favre variables they noted a-j.tional terms entered the
modeling equations that were explicitly deperlecrt on the compressibility of
the fluid. Also, they suggested that the dissipatior tate would require some
scaling on density to assure pruper representatior > :ue compressible terms.
Later, Rubesin (ref. 31) analyzed how the additio _1 cempressibility terms in
the kinetic energy cou:! be further modeled. Exp .rience with the latt:r model
(ref. 32), however, showed that reasonable comparison with data could be
achieved if these supplemental terms were ignored. Tnis, together with the
rather successful experience with the Wilcox-Traci two-equation model (ref. 7),
which also does not use rhese terms, led to the neglect of extra compressibil-~
ity terms in the present model.

The scaling introduced by compressibility in the present model can be
illustrated by an analysis of tbe behavior of the two-equation model in the
near-wall region of compressible boundary layer on a flat plate. Emphasis will
be placed on the "iaw-of-the-wall" region, where it is permissibie to neglect
convection and molecular diffusion. The momentum equation (eq. (4)) reduces
to

3
ve Mg, (81)

and the model equations simplify to
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In the logarithmic region of the boundary layer, the turbulence Reynolds

number is sufficiently high that

10 (84)
Y=g
Also, in this region (ref. 33),
* yu
2ol
T W

where

u
u* =f ]/—p— du (86)
0 ow

In this boundary-layer region, a balance exists between the production and dis-
sipation of the turbulence kinetic energy so that the diffusion term in equa-
tion (82) can also be neglected. Froin equations (12), (82), (85), and (86),

it follows that
]/p Ur
wlY— = —{[T 75— 87
é?w B*I/ZKy ( )

From equation (81), with equation (87), it is found that

(£)e - a (88)

O
lw B8

Equations (87) and (88), therefore, represent the density scaling inherent in
the momentum and turbulence mixing energy model equations. The scaling ques-
tion would be closed if the forms in the above equations would als satisfy
the specific dissipation rate equation. When equations (85) through (38) are
substituted into equation (83) there results

-7‘ u T
0 = yarl/2 -(B*f/z + 20«) + 2a.<2[2 + O(U—T)f(ble, $)+ .. ] (89)
e

3

Thus in the limit of the infinitely high Reynolds number where u fue -+ 0, the
last term vanishes and the usual incompressible tlow interrelationship between
the modeling coefficients results. Therefore, equation (83) is satisfied for
high Reynolds number, indicating that the density scaling represented by
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equation in the logarithmic region of s boundary layer. It is interesting
that in this boundary-layer region the length scale is

el/2

= a1/ (90)

and identical to that which exists in an incompressible flow.

Calculations of the boundary-layer skin friction on an adiabatic flat
plate at Mach numbers up to five and for cooled wall conditions at a Mach
number equal to five are compared with results from the van Driest II formulas
in figures 17 and 18. These formulas have been shown (ref. 34) to represent
the bulk of existing data under these conditions to about *10%. The agreement
between the methods is excellent, but thig is not surprising in view of the
similarity of the density scaling indicated by equations (87) and (88) and
that which is inherent in the van Driest formulas. What differences exist are
largely due to the density scaling differences inherent in the wake region of
the boundary layer. For these flat plate conditions, both the two-equation
and RSE models yield essentially the same resuits.

An example of a more severe test of the models for compressible fiow is
the boundary-layer experiment at a Mach number of four conducted by Lewis,
Gran, and Kubota (ref. 35). In this experiment, an axisymmetric turbulent
boundary layer on the adiabatic interior wall of a circular cylinder was sub-
jected to an adverse pressure gradient followed by a favorable pressure gradi-
ent. These pressure gradients were achieved by means of a shaped centerbody.
The distribution of the surface pressure is shown in figure 19. A pressure
rise of nine times the upstream pressure was attained befor-~ pressure relax-
ation occurred. For reference, the circled numbers along the abscissa desig-
nate stations at which profile data will be comparea in the figures that
follow. The experimental data are primarily boundary-layer surveys of impact
Pressure and total temperature which are used to provide the mean velocity and
density profiles at a sequence of stations. Local skin-friction coefficients
were then obtained from Clauser plots of these data compared to equation (85).

Figure 20 shows the distribution of the surface skin-friction coefficient
within the test zone. The coefficient shown is defined in terms of the
upstream boundary-layer edge conditions rather than the local conditions and
is therefore proportionai to the surface shear. Along with the computed
results based on the models presented here, computations basei on the Marvin-
Sheaffer code (ref. 36), which has been extended to contain a classic mixing
length model essentially identical to that of Cebeci (ref. 37), are glven for
comparison. The mixing length model fails to capture the full rise of the
skin friction caused by the adverse pressure gradient at these Mach numbers.
On the other hand, it follows the data in the region of favorable pressure
gradient quite well. The second-order closure models demonstrate a much
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better prediction of the rise in skin friction in the adverse pressure gradient
region; in the following tavorable pressure gradient region, however, they show
somewhat too large a drop in the skin friction. The two second—crder models
yield essentially equivalent results.

Figure 21 shows the distribution of tte boundary-layer shape factor,
H = §*%/0, along the test zone. The second-order models yield results that are
close to the data. The results are generally better than those of the mixing
length model except for the region immediately downstream of the station where
the computations were initiated by matching the calculated and experimental
momentum thicknesses.

Figures 22 through 27 show comparisons of the calculations based on the
different turbulence models with mean velocity and turbulent shear profile
data at the three stations designated in figure 19. Station 1 represents
essentially flat plate conditions; station 2 is near the end of a long run of
adverse pressure gradient; and station 3 is at the end of the favorable pres-
sure gradient region. All of the models well represent the velocity profile
at staticn 1. If one were to be favored, it would be the mixing length model
which has been fine-tuned to represent equilibrium boundary layers. Figure 23
shows the turbulent shear profiles computed and measured at this station.

Near the wall, the mixing length model overpredicts the shear by about 10%,
whereas the second-order models are about 10% lower than the measurements. In
the outer part of the boundary layer all the models yield results that are
about 15X of the peak shear higher than the data. When consideraticn is given
to the possiblc errors in the data, these comparisons are reasonably gcnd and
demonstrate that the second-order models generally give results in a zero pres-
sure gradient as good as the fine-tuned mixing length model.

Figures 24 and 25 show the mean velocity and shear stress profiles at the
station at the end of the adverse pressure gradient region. The experimental
mean velocity data have become fuller in the vicinity of the surface, and the
thickness of the boundary layer has been reduced relative to the data at the
upstream station. All three models generally reflect this behavior, with the
two-equation model showing the near-surface behavior best. Surprisingly, the
RSE model does not show the near-wall fullness in the velocity profile even
though it provides the best representation of the three models for the skin
friction and local shear profile.

After the run of favorable pressure gradient, figure 26 shows the e:peri-
mental mean velocity profile fuller and thicker than at the previously indi-
cated station. All the models represent the experimental data quite well,
with the second-order models showing a shade better agreement. The experi-
mental shear stress profile at this station is now about an order of magnitude
lower than the shear that existed at the previous station. Again the models
show this drop in shear, however the second-order models overpredict the drop
in shear in the inner part of the boundary layer. This is consistent with
their skin-friction values at this station.

For this example of the behavior of a compressible boundary layer experi-
encing both adverse and favorable pressure gradieats, it is concluded that the
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second-order closure models, with modeling coefficients that are independent

of the pressure gradients, represent the experimental data better than a
mixing-length model with pressure gradient dependent modeling. This conclu-
sion was also reached in references 38 and 39, where a broad range of compres-
sible turbulent boundary-layer experimcnts were compared with the two--«iuation
model for both attached and separated flows and with the RSE model for attached
flows.

ADVANCED BOUNDARY-LAYER APPLICATIONS

The models presented here have been compared with the results of boundary-
layer experiments designed to investigate special aspects of turbulence model-
ing. The effect of sudden application of transverse shear on the redistribu-
tion rate between the individual components of the Reynolds stress tensor was
studied experimentally in references 40 and 41 and compared with our models in
reference 42. The results of the comparison of the experimental data and the
computations based on the models showed small improvement over a simple mixing-
length model but still indicated a too-rapid rate of response to the transverse
shear. It appears that the success of the RSE model for normally strained
flows as indicated in figure 1 did not carry over as well to shearing strains.

Another application of the models has been to the problem of the effect
of longitudinal curvature on turbulent boundary-layer behavior, the topic
first recognized by Bradshaw (ref. 43). The Reynolds-stress equations were
applied to this problem directly through conversion of the coordinates from
Cartesian to curvilinear with one axis tangent to the body, s, and the other
normal to the surface, n. The two-equation model, however, required a basic
reinterpretation of the meaning of thke symbol e, the kinetic energy term used
earlier,

For flow over a streamwise curved surface with local radius 2f curva-
ture R (convex, R > 0; concave, R < 0) the s,n curvilinear coordinate
system introduces centrifugal and coriolis acceleration terms in the instanta-
neous equations of motion. In turn, these acceleration terms give rise to
ad¢itional terms inversely proportional to R in the Reynolds stress equa-
tions. For a thin incompressible boundary layer these equations can be wriftten
as

u 3228 + v 3%%2 + 2 % Ten = “2Tsn %% + % Brwe - X*w(rss + % e) + Tsn(%% - %)
- % Tsn(%% - %) + % [(v + o* %) a;%] (91)
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In these equations, terms with common factors have not been combi ied in
order to reveal the physical source of the individual terms, that is, produc-

tion, redistribution, etc. The sum of equations (91) through (93) vields the
kinetic energy equation

%¢ y 3 _ . (Bu _u)._ . _3_( *E)E
“3s "V *Sn(an R) Be“’+an["+° w) on (95)

The specific dissipation rate equation is

2 2 2 2 2
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Equations (91) through (26) were introduced into a boundary-layer code,
and the results cbtained from this code for comparison with some experimental
data are given in the following figures. Before discussing these figures, how-
ever, it is interesting to examine the behavior of the Reynolds stress equa-
tions in the logarithmic region of the boundary layer where convection and dif-

fusion terms can be neglected. Note that for this examination centrifugal
forces are retained. Under these cenditions,

iyll? L2 Bk %% +3 %
e TEYW T u (97)
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For a negative value of R, a concave surface, equations (97) to (100) show
that, relative to the kinetic energy, u' is decreased, v' is increased, w'
remains unchanged, and the shear stress 1 is increased. A convex surface
results in opposite behavior.

When equations (95) and (96) were utilized as the model equations for a
two-equation model in the boundary-layer equations appropriate to longitudi-
nally curved surfaces, it was found that the additional terms containing R
did not produce the known curvature effects. This deficiency was corrected by
exploiting the observations of the similar tehavior of the shear stress and
v' in the Reynolds stress equation in order to reinterpret the meaning of e
for the two-equation model. As in references 1 and 17, e is thought of as a

"mixing energy" rather than a "kinetic energy" and is defined as

Thn (101)

With this definition for e and the forms of equations (92) and (95) as guid-

ance, the e equation jor use with tne two-cyuation model only is written, in
an ad hoc manner, as

LN B R 9 33]
u R) Breu + o [(v + oxe) 3= (102)

—+ v
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Y 3s

f)u u

T "\n TR

where ¢ is given by equation (12) and the specific dissipation rate equation
is equation (96). All the modeling coefficients and relationships employed in
the two-equation model used earlier are retained. The third term on the left
side of equation (102) represents the principal extra rate of strain intro-
duced by the longitudinal curvature.

These model corrections for the effect of longitudinal surface curvature
were tested against two boundary-layer flows experimentally measured by So and
Mellor (ref. 44) over a convex surface. One flow was in a zero pressure gra-
dient, whereas the second Foundary layer experienced an adverse pressure gra-
dient. Figures 28 through 33 compare the measured data with the computed
tesults, Figures 28 and 29 compare measured skin friction and form factors
with the computed resuits with and without accounting for the effect of longi-
tudinal surface curvature. The computed results were matched to the first sta-
tion by assuming the flow upstream of that station to be on a flat plate of a
length to yield the correct skin friction there. For the case of the convex
wall with constant pressure, the unmodified models show none of tue drop in
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skin friction experienced in the experiment. Except for their behavior imme-
diately after the first station where the radius of curvature is suddenly
introduced, the modified models give an excellent representation of the skin-
friction behavior on the convex surface. This is rather remarkable for the
two-equation model, when its ad hoe formulation is considered. Both modified
models also well represent the rise in the form factor experienced by the data.
For the case of the adverse pressure gradient (fig. 29) the unmodified models
again do not show an adequate drop in the skin friction, whereas the modified
models represent the skin-friction data quite well. The models with surface
curvature corrections also represent the shape factor data in the adverse pres-
sure gradient well.

In figures 30 and 31, the computations are compared with the mean stream-
wise velocity data in law-of-the-wall coordinates. The data correspond to the
stations farthest downstream where skin friction was measured for the zero and
adverse pressure gradient cases, respectively. The effect of the convex sur-
face is to enlarge the contribution of the wake portion of the boundary layer.
Both the RSE and two-equation models that account for the longitudinal curva-
ture capture this behavior rather well for both cases of surface pressure dis-
tribution. Again, the added rate of strain in the energy equation of the two-
equation model yields remarkably close agreement with the data — even somewhat
better than the RSE model. Note that for the adverse pressure gradient flow
the large RSE model differences from measurements are mainly due to the models’
overpredicting cg at the station chosen for comparing theory and experiment.
Figures 32 and 33 p-ovide a measure of how well each model predicts the various
Reynolds stresses. Generally speaking, the RSE model predicted stresses are
as far above the measured values as the two-equation model predicted stresses
are beiow measured values. Interestingly, while the near-wall values are more
closely simulated with the RSE model, the shapes are more closely simulated
with the two-equation model.

CONCLUDING REMARKS

The most significant result of the study is the observation that the two-
equation model is as accurate 3 the RSE model for the class of boundary layers
considered. Turthermore the new two-equation model constitutive relation per-
mits accurate prediction of all components of the Reynolds stress tensor.

The RSE model holds a distinct advantage over the two-equation model for
turbulent flows which experience sudden changes in the strain rate and/or
shear. While the two-equation model accurately predicts equilibrium states,
the rate of approach to equilibrium often is inaccurate. With the RSE model,
both the rate of approach to equilibrium and the equilibrium state are accu-
rately predicted.

Results obtained suggest two tentative conclusions. First, there appears

to be little advantage in using the RSE model rather than the two-equation
model for two-dimensional attached boundary layers. Second, for separating
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flows and for flow subjected to abrupt changes in strain rate and/or shear,
the RSE model may prove superior to the two-equation model.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, October 15, 1979

n




10.

11.

12,

13.

REFERENCES

Wilcox, D. C.; and Chambers, T. L.: Streamline Curvature Effects on Tur-
bulent Boundary Layers. DCW-R-04-01, DCW Industries, 1975.

Wilcox, D. C.:; and Chambers, T. L.: Computation of Turbulent Boundary
Layers on Curved Surfaces. DCW-R-07-01, DCW Industries, 1976.

Saffman, P. G.: A Model for Inhomogeneous Turbulent Flow. Proc. Roy.
Soc., London, vol. A317, no. 1530, 1970, pp. 417-433.

Wilcox, D. C.; and Alber, I. E.: A Turbulence Model for High Speed Flows.
Proceedings of the 23rd Heat Transfer and Fluid Mechanics Institute,
Northridge, Calif., June 14-16, 1972, pp. 231-252.

Saffman, P. G.; and Wilcox, D. C.: Turbulence Model Predictions for Tur-
bulent Boundary Layers. AIAA Journal, vol. 12, no. 4, 1974,
PP. 541-546.

Wilcox, D. C.; and Traci, R. M.: A Complete Model of Turbulence. AIAA
Paper 76-351, July 1976.

Rubesin, M. W.; Crisalli, A. J.; Horstman, C. C.; Acharya, M.; and
Lanfranco, M. J.: A Critique of Some Recent Second-Order Closure
Models for Compressible Boundary Layers. AIAA Paper 77-128,
January 1977.

Ludwieg, H.; and Tillman, W.: Untersuchungen uber die Wandschubspannung
in turbulenten Reibungsschichten. Ing.-Arch., vol. 17, 1949,
pp. 288-299 (English translation in NACA TM 1285, 1950).

Saffman, P. G.: Development of a Complete Model for the Calculation of
Turbulent Shear Flows. Paper presented at the 1976 Duke Turbulence
Conference, Duke University, Durham, North Carolina, April 1976.

Jones, W. P.; and Launder, B. E.: The Prediction of Laminarization with
a Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer,
vol. 15, 1972, pp. 301-314.

Escudier, M. P.: The Distribution of the Mixing Length in Turbulent Flows
Near Walls. Rept. TWF/IN/1, Imperial College, London, 1965.

Tucker, H. J.; and Reynolds, A. J.: The Distortion of Turbulence by
Irrotational Plane Strain. J. Fluid Mech., vol. 32, pt. 4, 1968,
pp. 657-673.

Ibbetson, A.; and Tritton, D. J.: Experiments on Turbulence in Rot.iting
Fluid. J. Fluid Mech., vol. 68, pt. 4, 1975, pp. 639-672.

31




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

32

Launder, B. E.; Ree:e, G. J.; and Rodi, W.: Progress in the Development
of a Reynolds St 'ess Turbulence Closure. J. Fluid Mech., vol. 68,
pt. 3, 1975, pp. 537-566.

Rotta, J. C.: Statistische Theorie nichthomogener Turbulenz. Zeitschrift
fur Physik, vol. 129, no. 6, 1951, pp. 547-572 (in German).

Naot, D.: Rapid Distortion Solutions for a Stress Transport Turbulence
Model in Contracting Flow. Phys. Fluids, 21 (5), 1978, pp. 752-756.

Wilcox, D. C.; and Chambers, T. L.: “,treamline Curvature Effects on Tur-
bulent Boundary Layers. AIAA J., vol. 15, no. 4, 1977, pp. 574-580.

Reynolds, A. J.; and Tucker, H. J.: The Distortion of Turbulence by Gen-
eral Uniform Irrotational Strain. J. Fluid Mech., vol. 68, pt. 4,
1975, pp. 673-693.

Townsend, A. A.: The Uniform Distortion of Homogeneous Turbulence. Quar-
terly Journal of Mechanics and Applied Mathematics, vol. 7, pt. 1,
1954, pp. 104-127.

Marechal, J.: Etude Expérimentale de la Déformation Plane d'une Turbu-
lence Homogéne. J. de Méch, vol. 11, no. 2, 1972, pp. 263-294 (in
French).

Ubervi, M. S.: Effect of Wind-Tunnel Contraction on Free-Streau Turbu-~
lence. J. Aeron. Sci., vol. 23, no. 8, 1956, pp. 754-764.

Champagne, F. H.; Harris, V. G.; and Corrsin, S.: Experiments on Nearly
Homogeneous Turbulent Shear Flow. J. Fluid Mech., vol. 41, pt. 1,
1970, pp. 81-139.

Laufer, J.: The Structure of Turbulence in Fully Developed Pipe Flow.
NACA Rep. 1174, 1954.

Wilcox, D. C.: A Model for Transitional Flows. AIAA Paper 77-126,
January 1977.

Von Karman, T.: Turbulence and Skin Friction. J. Aero. Sci., vol. 1,
no. 1, 1934, pp. 1-20.

Klebanoff, P. S.: Characteristics of Turbulence in a Boundary Layer with
Zero Pressure Gradient. NACA Rep. 1247, 1955.

Coles, D. E.; Hirst, E. A.; and S. J. Kline, et al., eds. Proceedir s:
Computation of Turbulent Boundary Layers — 1968 AFOSR-IFP-Stanfoid
Conference, Vol. II, Starford University, California, Thermoscieace
Div., 1969.

Bradshaw, P.: The Response of a Constant-Pressure Turbulent Boundary
Layer to the Sudden Application of an Adverse Pressure Gradient. ARC
R&M 3575, 1969.




29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

> e

Andersen, P. S.; Kays, W. M.; and Moffat, R. J.: The Turbulent Boundary
Layer on a Porous Plate: An Experimental Study of the Fluid Mechanics
for Adverse Free-stream Pressure Gradients. Rept. HMT-15, Dept. Mech.
Engr., Stanford University, California, 1972.

Favre, A.: Equations des Gaz Turbulents Compressibles. J. Mecan.,
vol. 4, no. 3, 1965, pp. 361-390.

Rubesin, M. W.: A One-Equation Model of Turbulence for Use with the Com-
pressible Navier-Stokes Equations. NASA TM X-73,128, 1976.

Viegas, J. R.; and Coakley, T. J.: Numerical Investigation of Turbulence
Models for Shock-Separated Boundary-Layer Flows. AIAA J., vol. 16,
no. 4, 1978, pp. 293-294.

van Driest, E. R.: Turbulent Boundary Layer in Compressible Fluids.
J. Aero. Sci., vol. 18, no. 3, 1951, pp. 145-160.

Hopkins, E. J.; and Inouye, M.: An Evaluation of Theories for Predicting
Turbulent Skin Friction and Heat Transfer on Flat Plates at Supersonic
and Hypersonic Mach Numbers. AIAA J., vol. 9, no. 6, 1971,
pp. 993--1003.

Lewis, J. E.; Gran, R. L.; and Kubota, T.: An Experiment on the Adiabatic
Compressible Turbulent Boundary Layer in Adverse and Favorable
Pressure-Gradients, J. Fluid Mech., vol. 51, pt. 4, 1972, pp. 657-672.

Marvin, J. G.; and Sheaffer, Y. S.: A Method for Solving the Nonsimilar
Boundary-Layer Equations Including Foreign Gas Injection. NASA
TN D-5516, 1969.

Cebeci, T.; and Smith, A. M. O.: Analysis of Turbulent Boundary Layers.
Academic Press, New York, 1974.

Horstman, C. C.; Kussoy, M. I.; and Lanfranco, M. J.: An Evaluation of
Several Compressible Turbulent Boundary-Layer Models: Effects of Pres-
sure Gradient and Reynolds Number. AIAA Paper 78-1160, July 1978.

Viegas, J. R.; and Horstman, C. C.: Comparison of Multiequation Turbu-
lence Models for Several Shock Separated Boundary Layer Interaction
Flows. AIAA Paper 78-1165, July 1978.

Bissonnette, L. R.; and Mellor, G. L.: Experiments on the Behavior of an
Axisymmetric Turbulent Boundary Layer with a Sudden Circumferential
Strain. J. Fluid Mech., vol. 63, pt 2, 1974, pp. 369-413. (Also
Ph.D. Thesis by Bissonnette, L. R., Princeton University, 1970.

Lohmann, R. P.: The Response of a Developed Turbulent Boundary Layer to
Local Transverse Surface Motion. Paper No. 76-FE-3, J. Fluid Eng.,
Trans. ASME, vol. 98, ser. I., no. 3, 1976, pp. 354-363. (Also Ph.D.
Thesis, University of Connecticut, 1974.)

33



42. Higachi, H.; and Rubesin, M. W.: Behavior of a Turbulent Boundary Layer

Subjected to Sudden Transverse Strain. AIAA Paper 78-201, January
1978.

43, Bradshaw, P.: Effects of Streamline Curvature on Turbulent Flow.
AGARD-AG~169, 1973.

44. So, R. M. C.; and Mellor, G. L.: An Experimental Investigation of Turbu-

lent Boundary Layers Along Curved Surfaces. NASA CR-1940, 1972.
|
i{ 34




® O A TUCKER REYNOLDS
RSE MODEL
- - =- TWO-EQUATION MODEL

CONST RATE PARALLEL
OF STRAIN FLOW

<w2> - <u2>

Figure 1.- Comparison of computed and measured distortion parameter for the
~ucker-Reynolds plane strain flow.
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Figure 18.- Effect of surface cooling on the skin friction on a flat plate at
M =15, Rey, = 107,
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